Claude Code Persistent VERSION: 1.0

Memorv Svstem DATE: 2026-01-31
y y . STATUS: ACTIVE
eSS QPP SSECUEREL e DOC TYPE: TECHNICAL OVERVIEW

Compounding Intelligence

B o ---
: '“_:z:::E
=00 = | O L &
- E.'::'_.‘:‘ ~— ||—= %[ﬂm
N

CORE VALUE PROPOSITION: Transform Claude Code from a stateless assistant into a learning system
that accumulates knowledge, recognizes patterns, and applies past successes to new tasks.

& NotebookLM

The Shift to Stateful Intelligence

Stateless / Standard Claude

Session - Resets every session
- Repeats mistakes
Session Q) Zero context retention

|~ 0% Growth rate

Sess|ol

Stateful / Memory-Enabled

- Maintains context
@) Learns from execution
~” Compounding improvement

- n+l Efficiency

hJ/T i |
f THE VALUE FORMULA: The more the system is used, the smarter it becomes.
o Every success becomes a template for future success.

V&

&1 NotebookLM

Local Infrastructure & Components

HOST MACHINE (~/docker/1local/)
DOCKER COMPOSE GROUP

.

Qdrant
Vector DB [/ Port 6334

r

n8n

Orchestration /
Port 5679

PostgreSQL
Structured Data

Ollama

Local Embeddings /
Port 11434

COMPONENT | PURPOSE

Qdrant Semantic memory storage
nan Workflow orchestration
Postgres Structured storage
Ollama Host-based embeddings

STARTUP COMMAND: docker compose up -d | HEALTH CHECK: Verify active ports 6334, 5679, claude-postgres

&1 NotebookLM

The Cognitive Tier Architecture

TIER 1: WORKING MEMORY (The Scratchpad)

%’] Ephemeral.
— (O Lifespan: 60 mins.

Intermediate reasoning for
complex multi-step tasks.
Auto-expires.

TIER 2: SHORT-TERM MEMORY (The Session)

E Contextual.
= Lifespan: Session Duration.

Persists within a
conversation.
Promotable to Long-Term.

TIER 3: LONG-TERM MEMORY
(The Vault)

Persistent.

Lifespan: Permanent.

Stores Facts, Preferences,
Decisions, and Context.
Survives restart.

& NotebooklLM

Core Memory Op

’

memory_store

params: { content, type,
project, tags }

Store content with semantic
embeddings into long-term vault.

...\

erations (API)

memory_recall

memory_scratch

params: { query, limit,
include_short_term }

Search via natural language
query across tiers.

ops: { create, read,
update, task_id }

Manage the 60-minute
ephemeral working memory slot.

memory_promote

memory_summarize

flow: Working -> Short-term
-> Long-term

Elevate important context to
more permanent tiers.

input: { memory_ids[] }

Consolidate fragmented
memories into a single summary.

& NotebookLM

Organizing the Knowledge Graph

- Cluster

SUPPORTS

Decision
B

CONTRADICTS

SUPERSEDES * C '

L
- L)
L I

TOOL: memory_organize

- 1ink / unlink : Create or remove
semantic edges

- traverse : Navigate the graph
structure

- cluster : Group similar vectors
(Threshold 0.85)

- prune : Remove stale or superseded

nodes

RELATIONSHIP TYPES: supports, contradicts, extends, supersedes, related, prerequisite, derived_from

&1 NotebookLM

The Compound Intelligence Learning Loop

POST-TASK

PRETTASK EXECUTION

RECALL E CAPTURE R W '

- Capture Trace
- Abstract Patterns

- Search Procedures
- Recall Trajectories

- Perfor.m Task
- Utilize Context

' FEEDBACK CYCLE I
Successful patterns increase relevance. Unhelpful items are deprioritized.

& NotebookLM

Pre-Task Protocol: Retrieval & Planning

Mandatory sequence triggered at the start of any implementation task.

Search Procedures

Find reusable patterns/templates for this
specific task type.

Recall Trajectories AUTOMATION TRIGGER:

Initiated automatically when

Retrieve ‘few-shot' examples from past task_type == 'implementation’

successful executions.

Apply Learnings
Retrieve domain-specific insights, constraints,
and library preferences.

Post-Task Protocol: Capture & Abstraction

Task

Completion ——
(Success)

No

End

Yes

Capture
Trajectory

Store Execution
Trace

Is Pattern

Capture Criteria Checklist

X

[«

Step count >= 3§

Likely to recur

Reusable?

Evaluate for
Procedure

Abstract into
Template

Abstractable (generalizable)
Novelty (no existing procedure)

Yes

Store
Learning

Capture
Gotchas/MNotes

&1 NotebookLM

Mechanisms of Experience: Trajectories vs. Procedures

TRAJECTORY (The Specific) PROCEDURE (The General)
8 R e
O
= Purpose: Few-shot learning examples. ® Purpose: Generalized templates.
= Data: Step-by-step trace, specific = Data: Trigger keywords, template steps,
decisions, outcomes. decision logic.
= Operation: trajectory” (store, recall). = Operation: procedure’ (capture, apply).
= Use Case: "How did I solve this exact = Use Case: "What is the standard way to
error last time?" set up a new API endpoint?"

&1 NotebookLM

Knowledge Acquisition & Correction

External Knowledge

J

rag_seanrch

Search Obsidian vault via
semantic similarity. Returns

document chunks
(threshold 0.4).

Internal Wisdom

learning

Store insights from tasks.
Errors are stored as "anti-
patterns” to prevent
repetition.

Operational History

episode

Record full context: tools
used, agents invoked, files
modified.

& NotebooklLM

Automated Maintenance & Self-Organization

JetBrains Mono

: : Sleep Cycle

TRIGGER:
Session End

CLUSTER PRUNE

(Group similar (Remove IO

(Connect related
discoveries)

uENEES superseded/stale
threshold 0.85) items)

COMPACTION
(Optimize Vector
Storage)

System autonomously organizes memory during idle time to ensure query efficiency.

&1 NotebookLM

Benchmarking & Performance Metrics

Success Rate Efficiency
@
¥
w -
ey
g8
=
Agent A Agent B
Ratio of completed vs. failed tasks. Demonstrates compounding efficiency.

Speed

Duration (ms)

Time to complete recursive tasks decreases over time.

TOOL: “benchmark™ (record, query, compare) A NotebookLM

Security, Privacy & Data Sovereignty

- All Data Local: No external
API calls for memory.

- Local Embeddings: Ollama
runs on host machine.

- No Cloud Dependencies: Fully
self-hosted Docker stack.

- Safety Protocol:
Credentials/Secrets are
explicitly excluded from memory.

Appendix: Data Structure
Qdrant Collections: long_term_memory, short_term_memory, working_memory, episodes, learnings, benchmarks,

procedures, trajectories, obsidian_vault
& NotebooklM

The Compounding Intelligence Future

System Intelligence

l

Time / Usage

1. From STATELESS (Amnesia) -> STATEFUL (Wisdom)
2. From MANUAL Repetition -> AUTOMATED Recall

Every success becomes a template. The memory system
ensures that we never solve the same problem twice.

& NotebooklLM

